

Data driven geophysical unstructured mesh generation

Jaime R Calzada^{1,2}, Ed Myers¹, Sergey Vinogradov¹ and Saeed Moghimi^{1,2}

¹Coastal Survey and Development Lab, NOAA ² University Center for Atmospheric Research (UCAR) Current operational mesh Hurricane Storm-Surge On-Demand Forecast System (HSOFS)

HSOFS mesh source data

USGS NED DEM + EC2012 mesh

Contains dry nodes only

Contains wet nodes only

HSOFS - DEM interpolation

Ocean City Inlet, NJ

New meshing paradigm

The Jigsaw library

From the Jigsaw documentation:

JIGSAW is a computational library for unstructured mesh generation and tessellation; designed to generate high-quality triangulations and polyhedral decompositions of general planar, surface and volumetric domains. JIGSAW includes refinement-based algorithms for the construction of new meshes, optimisation-driven techniques for the improvement of existing grids, as well as routines to assemble (restricted) Delaunay tessellations, Voronoi complexes and Power diagrams.

Darren Engwirda: Generalised primal-dual grids for unstructured co-volume schemes, J. Comp. Phys., 375, pp. 155-176, <u>https://doi.org/10.1016/j.jcp.2018.07.025</u>, 2018.

https://github.com/dengwirda/jigsaw

Mesh generation process overview

- 1) Select DEM's to be included in mesh.
 - a) These should have already passed QA/QC process.
- 2) Compute planar straight line graph (PSLG)
 - a) Optional zmin and zmax (can be unbounded)
- 3) Compute size function
 - a) Linear Distance to shoreline
 - b) Subtidal flow limiter
 - c) Optional min and max sizes
 - i) No smaller than DEM size, but usually bounded to 30-50 meters.
- 4) Pass Size function or PSLG to Jigsaw to generate mesh.

New meshing algorithm before after 4980000 4980000 4975000 4975000 4970000 4970000 4965000 4965000 4960000 4960000 4955000 4955000 4950000 4950000 -8235000 -8230000 -8225000 -8220000 -8215000 -8210000 -8225000 -8215000 -8210000 -8235000 -8230000 -8220000 0.0 -36.37 56.2

-36.37

0.0

56.2

New meshing algorithm

before

after

Planar straight line graph

Multi-polygon that defines the extent of the meshing domain.

Hudson River Estuary, NY

zmax = 15 [m]

Size function Linear distance to shoreline

size_at_pixel = expansion_rate * target_size *
distance_to_nearest_shoreline_point + target_size

For the present example:

expansion_rate = 0.001 [meters/meter]

target_size = 50. [meters]

Size function

size_at_pixel =| (1./3.) * (h/dh)|

https://wiki.fvcom.pml.ac.uk/doku.php?id=configuration%3Agrid_scale_considerations

Size function Combined size function

Minimum of all size functions is passed to jigsaw along with the planar straight line graph defining the domain.

Planar straight line graph

Examples of two different PSLGs

zmax=15

zmin=-3000, zmax=15

Size function

Previous Puerto Rico mesh

Previous Puerto Rico mesh

New Puerto Rico mesh

New mesh vs previous mesh

Previous Puerto Rico mesh

New Puerto Rico mesh

Future work

Add size function criteria for watershed delineation using pysheds.

Add additional size function criteria.

Auto assign boundaries for direct mesh-to-model bootstrapping.

Test with different (coupled) models: ADCIRC/WWIII and SCHISM/WWM

Implement support for quadrilateral geometries (this is natively supported by jigsaw).

Add support for 3D meshes (for baroclinic modelling).

github.com/jreniel/geomesh