The Impacts of Urbanization/Urban Development in the Climate of Puerto Rico

Angel R. Torres Valcarcel MPH PhD
Department of Earth, Atmospheric and Planetary Sciences
Purdue University
Abstract

A detailed analysis of century-scale climate change for Puerto Rico was done to assess the degree to which some of this change might be related to LULCC. We used long-term data, Geographic Information Systems (GIS), statistical analysis and Regional Atmospheric Modeling Systems (RAMS) to detect and assess the impact of local urban development on temperature and precipitation. We found strong evidence of a relationship linking temperature and precipitation magnitudes to local urban development. Findings for maximum, average and minimum temperature are robust showing that urbanization has increased local temperatures and levels of impact found here represent minimum estimates since they were based on data that had some prior adjustment intended to control for urban signals. Strong evidence of this relationship was also found in the precipitation data analysis, but no clear correlation was found in the direction, magnitude, period and location of rain with urban development implying that other factors dominate or are playing some role in this relationship. RAMS numerical modeling results were inconclusive suggesting that further tuning of settings and parameters are needed before model results can be used to guide decision-making.

© Angel R. Torres Valcárcel, 2013
Dissertation Research

• 1st part (Statistical Analysis)
 – Long term observational study
 • Temperature (Maximum, Average and Minimum)
 • Precipitation (Monthly Average, Yearly Total Average)

• 2nd part (Computer simulations)
 – Computational experiments
 • Regional Atmospheric Modeling System (RAMS)
 – Precipitation computer simulations

© Angel R. Torres Valcárcel, 2013
I. Long Term Observational Study

A. Have urbanization / urban development impacted local temperatures?, if so...
 i. What is the magnitude of the temperature impacts?

B. Have urbanization / urban development impacted precipitation quantities?, if so...
 i. What is the magnitude of the precipitation impacts?

II. Computational Experiments

A. What are the major land features and processes controlling local precipitation events?
Previous Work

• Land Use / Land Cover Change
 – Forest Regeneration
 – Urban Heat Island (UHI) in San Juan

• Temperature
 – Parameter-elevation on Independent Slopes Model (PRISM)
 – Climate Change Scenarios
 – RAMS

• Precipitation
 – PRISM
 – Rain Regionalization
 – RAMS

• Vegetation
 – Holdridge Ecological Life Zones (HELZ)
 – Puerto Rico GAP

© Angel R. Torres Valcárcel, 2013
Data & Methods

• Digital Maps
 – Land use / Land cover (Puerto Rico GAP Project 2004)
 – Holdridge Ecological Lifezones (HELZ)

• Long term weather station data
 – Temperature (adjusted)
 – Precipitation (raw)

• Geographic Information Systems (GIS)

• Statistical Analysis (ANOVA, T-test; $\alpha = 0.05$)

• Regional Atmospheric Modeling System (RAMS)

© Angel R. Torres Valcárcel, 2013
Holdridge Ecological Lifezones

• Geo-climatic plant classification system
• Uses **physiographic, climatic and physiological characteristics of plants**
 – Elevation
 – Precipitation
 – Humidity
 – Potential evapotranspiration
 • Water availability for ecosystem function
 – Bioemperature
 • Range of temperatures for vegetation grow (0°C to 30 °C)

Holdridge, 1967
Puerto Rico Holdridge Ecological Lifezones, urban areas and weather stations.
HELZ Temperature Data Analysis

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Maximum Temperature</th>
<th>Average Temperature</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Station Data</td>
<td>Station Data</td>
<td>Station Data</td>
</tr>
<tr>
<td>Decadal</td>
<td>(°C)</td>
<td>Sig.</td>
<td>(°C)</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>27.19</td>
<td>0.000</td>
<td>22.26</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>30.41</td>
<td>0.315</td>
<td>25.41</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>30.66</td>
<td>0.315</td>
<td>26.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HELZ</th>
<th>GIS</th>
<th>GIS</th>
<th>GIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century</td>
<td>(°C)</td>
<td>Sig.</td>
<td>(°C)</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>28.16</td>
<td>0.000</td>
<td>23.07</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.25</td>
<td>0.000</td>
<td>24.54</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>29.86</td>
<td>0.000</td>
<td>25.37</td>
</tr>
</tbody>
</table>

\(\alpha = 0.05 \)

© Angel R. Torres Valcárcel, 2013
HE LZ GIS Maps Precipitation Data Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm/year</td>
<td>Sig.</td>
<td>cm/year</td>
<td>Sig.</td>
<td>cm/year</td>
<td>Sig.</td>
<td>cm/year</td>
<td>Sig.</td>
</tr>
<tr>
<td>WF</td>
<td>342.33</td>
<td>0.000</td>
<td>399.18</td>
<td>0.000</td>
<td>407.50</td>
<td>0.000</td>
<td>214.27</td>
<td>0.000</td>
</tr>
<tr>
<td>MF</td>
<td>341.78</td>
<td>0.000</td>
<td>331.36</td>
<td>0.000</td>
<td>362.92</td>
<td>0.000</td>
<td>181.69</td>
<td>0.000</td>
</tr>
<tr>
<td>DF</td>
<td>220.54</td>
<td>0.000</td>
<td>242.41</td>
<td>0.000</td>
<td>253.72</td>
<td>0.000</td>
<td>152.68</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\(\alpha = 0.05 \)

© Angel R. Torres Valcárcel, 2013
Temperature Results

Statistical Analysis of long term observational data from surface stations
Urban Temperature Data Analysis

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Station Data</th>
<th>GIS</th>
<th>Station Data</th>
<th>GIS</th>
<th>Station Data</th>
<th>GIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Temp. (°C)</td>
<td></td>
<td>Average Temp. (°C)</td>
<td></td>
<td>Minimum Temp. (°C)</td>
<td></td>
</tr>
<tr>
<td>Decadal</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.00</td>
<td>29.76</td>
<td>0.000</td>
<td>24.92</td>
<td>24.63</td>
<td>0.242</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Century</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>30.16</td>
<td>28.13</td>
<td>0.000</td>
<td>24.22</td>
<td>23.05</td>
<td>0.000</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.62</td>
<td>29.15</td>
<td>0.000</td>
<td>25.00</td>
<td>24.27</td>
<td>0.000</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>30.13</td>
<td>29.80</td>
<td>0.000</td>
<td>25.56</td>
<td>25.32</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$\alpha = 0.05$
GIS Maps Urban - Non Urban Temperature Differences by Temperature

Temperature Difference (Celsius)

- Wet Forest
- Moist Forest
- Dry Forest

Maximum

Average

Minimum
Temperature Results Summary

• Station data analysis (ANOVA; $\alpha = 0.05$)

 – Statistical differences between Urban & Non Urban temperatures (maximum & minimum) in the Moist Forest

 • Urban areas greatest impact found on minimum temperatures

 – Average Urban & Non Urban temperatures statistically similar in the Moist Forest

• GIS maps data analysis (T-Test; $\alpha = 0.05$)

 – Statistical difference between Urban & Non Urban detected in all temperatures at all HELZ’s (FILNET 2 data & PRISM)
Precipitation Results

Statistical Analysis of long term observational data from surface stations
GIS Maps Urban versus Non Urban Precipitation Data Analysis by HELZ

<table>
<thead>
<tr>
<th></th>
<th>1900-1929 (cm/y)</th>
<th>1930-1959 (cm/y)</th>
<th>1960-1989 (cm/y)</th>
<th>1990-2007 (cm/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
</tr>
<tr>
<td>WF</td>
<td>375.33</td>
<td>342.11</td>
<td>0.000</td>
<td>434.80</td>
</tr>
<tr>
<td></td>
<td>199.31</td>
<td>214.37</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>347.45</td>
<td>341.00</td>
<td>0.000</td>
<td>260.05</td>
</tr>
<tr>
<td></td>
<td>169.90</td>
<td>183.31</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>225.54</td>
<td>219.91</td>
<td>0.000</td>
<td>271.75</td>
</tr>
<tr>
<td></td>
<td>149.74</td>
<td>153.06</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

α = 0.05

© Angel R. Torres Valcárcel, 2013
Yearly Average Total Precipitation Urban - Non Urban Differences By HELZ

![Graph showing yearly average total precipitation differences by HELZ. The graph displays the precipitation difference (centimeters/year) for various decades: 1900-1929, 1930-1959, 1960-1989, and 1990-2007. The data is categorized by wet, moist, and dry forests.](#)
Number of Study Periods Receiving Higher Yearly Average Total Urban vs Non Urban Precipitation

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Urban Periods</th>
<th>Non Urban Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Forest</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Number of Study Periods With Higher Yearly Average Total Urban vs Non Urban Precipitation Trends

- Wet Forest: Urban > Non Urban
- Moist Forest: Urban > Non Urban
- Dry Forest: Urban > Non Urban
Precipitation Results Summary

• Station data analysis (ANOVA; $\alpha = 0.05$)
 – No statistical differences detected or similar Urban & Non Urban monthly average precipitation

• GIS generated data analysis (T-test; $\alpha = 0.05$)
 – Statistical differences found between Urban & Non Urban yearly average total precipitation in all periods and all HELZ
 – No clear correlation between time period, HELZ, magnitudes or direction of precipitation differences.
 – Higher precipitation trends are more prevalent over urban than non urban areas at most study periods.

© Angel R. Torres Valcárcel, 2013
Research Results Summary

• Temperature impacts of urban development detected across the entire island (strong evidence).

• Precipitation impacts of urban development detected across the island but less clear (good evidence).

• RAMS simulation results inconclusive (need more studies)
Temperature Remarks

• Temperature
 – Specific ecological and environmental impacts are currently unknown.
 • Ecosystem and species resiliency studies are needed.
 • Potential risks to human health, if any, are unknown
 – Urban sustainable policies and practices could help mitigate impacts.
 • Some practices could also have mitigation value for precipitation impacts
Precipitation Remarks

• Has been **decreasing** for the entire century.

• Climate change models predict the **increase of dry periods and heavy precipitation** events.
 – Combines water storage issues with floods, landslides, etc
 – Water management plan is critical
 • Must account for **drainage, storm water and runoff** management

• Mitigation unlikely, adaptation through watershed management may be only option
Precipitation Remarks

• Evidence of urban impacts detected but unclear
 – Further studies important to assist decision making.

• Computational experiments results were inconclusive.
 – More fine-tuning required to assist decision making

• Some practices could also have mitigation value for temperature impacts.
Impact Management

• Temperature Mitigation
 – Further studies to monitor impacts
 – Implement urban **greening policies and practices**
 • Urban reforestation, agriculture, gardening & landscaping
 • Reduce fossil fuel **transportation** dependence
 – Promote collective transportation
 – Improve public transportation
 – Account for and coordinate with private collective transportation
 – Promote walking and reclaim sidewalks (become **walk friendly**)
 – Promote bicycle use (become **bicycle friendly**)

© Angel R. Torres Valcárcel, 2013
Impact Management

• Precipitation Adaptation
 – Detailed studies to measure magnitude of impacts
 – Sustainable Watershed Management
 • Educate public, government officials and companies
 • Reduce water reservoir capacity loss and control sedimentation
 • Control and avoid rural upland deforestation
 – Account for natural drainage
 • Study, manage, increase and protect natural permeable areas
 • Protect and expand natural wetlands
 • Develop constructed wetlands as retention ponds
 – Urban runoff control projects
 • Account and manage urban runoff
 • Create urban wetlands and artificial drainage sinks
 • Protect urban green areas
The End

Questions and Comments
HELZ Temperature Data Analysis

Decadal Data

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Station Data</th>
<th>Maximum Temperature</th>
<th>Average Temperature</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Forest</td>
<td></td>
<td>27.19</td>
<td>22.26</td>
<td>17.33</td>
</tr>
<tr>
<td>Moist Forest</td>
<td></td>
<td>30.41</td>
<td>25.41</td>
<td>20.41</td>
</tr>
<tr>
<td>Dry Forest</td>
<td></td>
<td>30.66</td>
<td>26.12</td>
<td>21.58</td>
</tr>
</tbody>
</table>

GIS Data

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Century Data</th>
<th>Maximum Temperature</th>
<th>Average Temperature</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Forest</td>
<td>28.16</td>
<td>23.07</td>
<td>17.98</td>
<td></td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.25</td>
<td>24.54</td>
<td>19.84</td>
<td></td>
</tr>
<tr>
<td>Dry Forest</td>
<td>29.86</td>
<td>25.37</td>
<td>20.87</td>
<td></td>
</tr>
</tbody>
</table>

PRISM Data

<table>
<thead>
<tr>
<th>HELZ</th>
<th>1963-1995 Data</th>
<th>Maximum Temperature</th>
<th>Average Temperature</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Forest</td>
<td>28.05</td>
<td>22.79</td>
<td>17.59</td>
<td></td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.83</td>
<td>24.76</td>
<td>19.76</td>
<td></td>
</tr>
<tr>
<td>Dry Forest</td>
<td>30.87</td>
<td>25.61</td>
<td>20.39</td>
<td></td>
</tr>
</tbody>
</table>
Urban Temperature Data Analysis

α = 0.05

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Station Data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Temp. (°C)</td>
<td>Average Temp. (°C)</td>
<td>Minimum Temp. (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decadal</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.00</td>
<td>29.76</td>
<td>0.000</td>
<td>24.92</td>
<td>24.63</td>
<td>0.242</td>
<td>20.84</td>
<td>19.51</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HELZ</td>
<td>GIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>30.16</td>
<td>28.13</td>
<td>0.000</td>
<td>24.22</td>
<td>23.05</td>
<td>0.000</td>
<td>18.28</td>
<td>17.98</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>29.62</td>
<td>29.15</td>
<td>0.000</td>
<td>25.00</td>
<td>24.27</td>
<td>0.000</td>
<td>20.37</td>
<td>19.70</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>30.13</td>
<td>29.80</td>
<td>0.000</td>
<td>25.56</td>
<td>25.32</td>
<td>0.000</td>
<td>20.99</td>
<td>20.85</td>
</tr>
<tr>
<td>HELZ</td>
<td>PRISM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963-1995</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
<td>U</td>
<td>NU</td>
</tr>
<tr>
<td>Wet Forest</td>
<td>30.21</td>
<td>27.97</td>
<td>0.000</td>
<td>24.02</td>
<td>22.75</td>
<td>0.000</td>
<td>17.88</td>
<td>17.58</td>
</tr>
<tr>
<td>Moist Forest</td>
<td>30.15</td>
<td>29.68</td>
<td>0.000</td>
<td>25.22</td>
<td>24.54</td>
<td>0.000</td>
<td>20.33</td>
<td>19.49</td>
</tr>
<tr>
<td>Dry Forest</td>
<td>31.08</td>
<td>30.78</td>
<td>0.000</td>
<td>25.80</td>
<td>25.53</td>
<td>0.000</td>
<td>20.55</td>
<td>20.32</td>
</tr>
</tbody>
</table>
RAMS Results

Computational experiments of potential scenarios based on real weather events
Areas of analyzed land-use change for each scenario and the Island response subdivisions.
Percentage of resulting scenarios with increased vs decreased precipitation

- Increased: 73%
- Decreased: 25%
- Equal: 2%
Percentage of Increase vs Decrease Precipitation Results by Scenario

- Shrubs
- Expand Forests
- Bare Soil
- Expand City
- Crops
- Grassland
- Forests
Total Precipitation Response ratio for each scenario at each region relative to control.
RAMS Results Summary

• Most scenarios (73%) resulted in decreased precipitation.
• Eastern part is the less responsive to LULCC simulations, Central part the most responsive
• Substitutions in both Forests (Rain Forests & Regenerated) caused the most cases of precipitation increase.
• Urban expansions caused more cases of precipitation increase than substitutions
• Substitutions in San Juan urban area decreased precipitation island wide.
Conclusions

• Urban development signals were detected in temperatures across the island.
 – **Strong supporting evidence** of urban impacts
 • Detected in surface stations
 • Detected in GIS generated maps
 – **ANOVA and t-test** effective detecting urban signals
Conclusions

• Urban development signals were detected on precipitation but less clear.
 – Not detected directly from stations but from GIS generated data.
 – Relationship is not constant

• Exists in both directions depending on period and HELZ
• Relationship is reversed in some periods
 – Precipitation over Urban areas dominate in the Wet Forest
 – Precipitation over Non Urban areas dominate in the Dry Forest
• Magnitude is not constant
Conclusions

• RAMS
 – Pilot study suggests that land cover changes in one area impact precipitation elsewhere on the island.
 – Eastern part less responsive to LULCC simulations, Central part the most responsive
 – Additional events, parameterization and sensitivity analyses are required to produce reliable conclusions for decision making
Theoretical Implications

• Provided a method that small locations could use to assess land use/land cover impacts
 – Effective, reliable and low budget
 • Tackles the research question directly (no need for transformations or indirect methods)
 • Needs only station data, GIS and statistics
 • Statistical quantification of impact
 – Can be used for any land use/land cover and any climate variable
 – Findings mean impact exists; can no longer be ignored.
Theoretical Implications

- Urban signal has been detected in local temperatures across the entire island
 - The magnitude of the signal is at least half degree and has not exceeded much over 2 degrees of difference.
 - Urban Heat Island (UHI) effect highly probable in Wet Forest developed area.
Theoretical Implications

• Urban signal has been detected in local precipitation across the entire island
 – The signal was detected since the beginning of the century
 – The relationship exists in both directions
 – The magnitude and direction of the relationship has shifted through the century depending on HELZ and time period
Practical Implications

- Temperature results suggests....
 - Further studies needed to assess local ecological or environmental impacts of temperatures.
 - If further impacts are identified specific policies and practices like urban reforestation could mitigate it
- Precipitation results suggests.....
 - Ecological or environmental impacts currently unclear
 - Adaptation maybe the only alternative, mitigation unlikely
Future Suggestions

• Temperature
 – Need urban stations in WF and DF locations
 – Need stations around reservations and development stressed locations

• Precipitation
 – Complete and analyze station adjusted data
 – Use radar and satellite precipitation data
 – Filter data to isolate locally generated events
Final Remarks

• Theoretical findings contribute to **understanding of phenomena** and development of **scientific methods**.
 – Urban signals have been detected in local temperatures and precipitation.
 – Methods suitable for all scales but mostly needed at smaller scales
 – RAMS needs further tuning and development

• Practical findings contributes to **local management** and **mitigation policies and practices**.
 – Urban temperature impacts mitigation possible through urban reforestation and greening policies and practices.
 – Urban precipitation impacts mitigation unlikely, adaptation may be only option
Final Remarks

- Climate science can benefit from studies at smaller spatial scales
 - Provide answers at higher spatial and temporal resolution
 - Findings can feed larger scale models
Atmospheric Phenomena

• Take place at different spatial scales
 – Global (Planetary)
 – Regional (Synoptic)
 – Local (Meso, Micro)

• Some phenomena have effects at particular scales
 – Green House Gases (Global)
 – Regional Oscillations (Synoptic)
 – Land Use/Land Cover Changes (Local)
<table>
<thead>
<tr>
<th>Meteorology</th>
<th>Subject</th>
<th>Climatology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric</td>
<td>Study Phenomena</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>(temperature, winds, precipitation, humidity)</td>
<td>(temperature, winds, precipitation, humidity)</td>
<td>(temperature, winds, precipitation, humidity)</td>
</tr>
<tr>
<td>Micro to Global</td>
<td>Spatial Scale</td>
<td>Micro to Global</td>
</tr>
<tr>
<td>(micro, meso, synoptic, planetary)</td>
<td></td>
<td>(micro, meso, synoptic, planetary)</td>
</tr>
<tr>
<td>(1 m – 1 Km) micro to (10³ Km – 40³ Km) global</td>
<td></td>
<td>(1 m – 1 Km) micro to (10³ Km – 40³ Km) global</td>
</tr>
<tr>
<td>Immediate conditions</td>
<td>Temporal Scale</td>
<td>Long term patterns</td>
</tr>
<tr>
<td>seconds to months</td>
<td></td>
<td>decades to geological periods</td>
</tr>
</tbody>
</table>
Microclimatology

- Local weather events are modified by natural and artificial biological, chemical and physical land features and processes.
 - Urbanization & deforestation induce dramatic changes to the land

--

Hong Kong Climate Change Observatory
http://www.hko.gov.hk/climate_change/urbanization_e.htm
Climate studies

• Most have been conducted in Continents
 – Continents do not represent all existing climates
 • Interaction between mixture of major air masses
 • Small tropical islands are dominated by tropical maritime mass
 – Fewer studies at small geographic places because of the lack of **long term data** and **high resolution information**
 – Climate science can greatly benefit from studies from smaller places (higher spatial resolution)
Study Site: Puerto Rico

- Long term climate data
 - Temperature
 - Yearly and monthly averages (FILNET 2 adjusted)
 - Precipitation
 - Yearly and monthly average totals (raw data)
- High resolution digital maps
- Relative high number of weather stations (high density)
Future Suggestions

• Temperature
 – Need urban stations in WF and DF locations
 – Need stations around reservations and development stressed locations
 – Generate maximum and minimum temperature Reanalysis data
Future Suggestions

• Precipitation
 – Complete and analyze station adjusted data
 – Use radar and satellite precipitation data
 – Filter data to isolate locally generated events
 – Standardize land cover vegetation classification for climate and ecological research
 – Downscale to higher spatial resolution
Microclimatology

- Studies **long term patterns** of atmospheric phenomena that develops within the **Planetary Boundary Layer (PBL)**
 - First several kilometers over the earth surface
 - Friction between earth’s surface and atmosphere
 - Natural phenomena and anthropogenic activities change surface fluxes and energy balance.
 - Land features and processes affect weather events
Planetary Boundary Layer (PBL)
Conclusions

• RAMS
 – Eastern precipitation seems to respond to topographic and/or other forcings or be controlled by other factors than land use/land covers changes.
 – Central and Western parts responded more to Land Use/Land Cover simulations.
 • Precipitation at central part seems to benefit from Eastern, Western and Urban boundary mechanical uplift convergence.
 – Urban greening and climatization practices may decrease precipitation island wide
 – Many counterintuitive and unexpected results imply more studies are needed to reliably run RAMS.
Conclusions

• RAMS
 - Expanding the Regenerated Wet Forest and the south expansion of the city are the most environmentally friendly and realistically plausible scenarios
 • Puerto Rico precipitation has been decreasing for the century and climate change scenarios for the region have predicted longer dry periods.
 • Expanding city east would increase precipitation but would threaten natural reserves, coastal expansion not desirable.
 • The combination of Regenerated Wet Forest expansion adding shrubs may increase precipitation for most of the island.
<table>
<thead>
<tr>
<th>HELZ</th>
<th>Station Data</th>
<th>GIS</th>
<th>PRISM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monthly Average</td>
<td>Yearly Average Total (cm)</td>
<td>Yearly Average Total (cm)</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
</tr>
<tr>
<td>Wet Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moist Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HELZ</th>
<th>Trends</th>
<th>GIS</th>
<th>PRISM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trends</td>
<td>Trends</td>
<td>Trends</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>NU</td>
<td>Sig.</td>
</tr>
<tr>
<td>Wet Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moist Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practical Implications

• Computational experiments results suggest....
 – Any Land Cover changes around the island would reduce precipitation in Eastern Puerto Rico
 – Expand Western Forest using shrub type vegetation to increase local precipitation
 – Urban climate mitigation and greening of San Juan may result in island precipitation decrease.
Future Suggestions

• RAMS
 – Parameterize major vegetation types in Puerto Rico, in particular the Dry Forest.
 – Find and run more real events to fine tune better control run in RAMS
 – Develop local RAMS code and programming sensitive to local needs and interests
Precipitation Magnitudes

• Monthly Average Precipitation (cm)
 – Averages the precipitation that falls each month
 • Sums precipitation totals from each month and divides by number of months
 – Used for station data analysis

• Yearly Total Average precipitation (cm)
 – Averages the precipitation that falls each year
 • Sums average monthly precipitation each year
 – Used for GIS interpolation
Urban Stations 60m Radius Yearly Average Total Precipitation 2 Way ANOVA

<table>
<thead>
<tr>
<th>Test for Combined Effects</th>
<th>1900-1929 cm/y</th>
<th>1930-1959 cm/y</th>
<th>1960-1989 cm/y</th>
<th>1990-2007 cm/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.056</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>*WF</td>
<td>0.991</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>*MF</td>
<td>0.049</td>
<td>1.000</td>
<td>0.017</td>
<td>0.003</td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td>0.532</td>
</tr>
</tbody>
</table>

From 1992 Land Cover Map
Statistical Analysis T-test

• Analysis of Variance & T-Test
 – Significance level ($\alpha = 0.001; 0.05; 0.1$)
 • Error Type I
 – Rejecting the null hypothesis (accepting alternative hypothesis) when is true
 – Increased chance with smaller α
 • Error Type II
 – Rejecting the alternative hypothesis (accepting the null hypothesis) when is true
 – Increased chance with larger α
T-Test

Research Methods Knowledge Base
http://www.socialresearchmethods.net/kb/stat_t.php
The t-test is used to determine if there is a significant difference between the means of two groups. The formula for the t-value is:

\[
\text{t-value} = \frac{\bar{X}_T - \bar{X}_C}{\text{SE} (\bar{X}_T - \bar{X}_C)}
\]

where \(\bar{X}_T \) and \(\bar{X}_C \) are the means of the two groups, and \(\text{SE} (\bar{X}_T - \bar{X}_C) \) is the standard error of the difference between the two means.
Holdridge Ecological Lifezones

• System of Vegetation Classification developed in 1967
• Combines plant physiology and environmental variables to map vegetation
 – Elevation
 – Evapotranspiration
 – Humidity
 – Precipitation
 – Biotemperature